

3.3V 1:10 LVCMOS PLL Clock Generator

Features

- Output frequency range: 25 MHz to 200 MHz
- Input frequency range: 6.25 MHz to 31.25 MHz
- 2.5V or 3.3V operation
- Split 2.5V/3.3V outputs
- ± 2.5% max Output duty cycle variation
- Nine Clock outputs: Drive up to 18 clock lines
- Two reference clock inputs: Xtal or LVCMOS
- 150pS max output-output skew
- Phase-locked loop (PLL) bypass mode
- 'SpreadTrak'
- Output enable/disable
- Pin-compatible with MPC9350 and CY29350.
- Industrial temperature range: -40°C to +85°C
- 32-pin 1.0mm TQFP & LQFP Packages

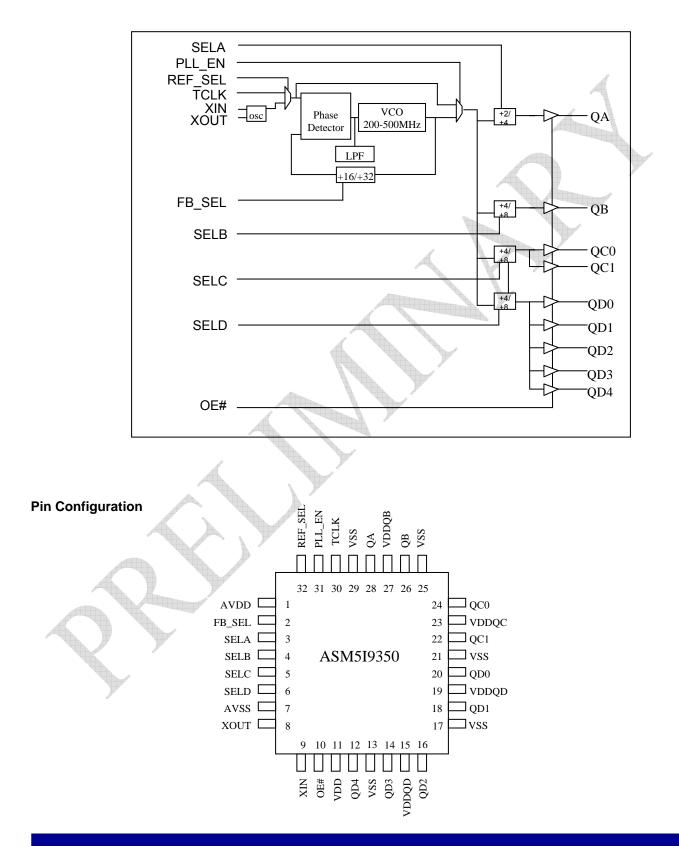
Functional Description

The ASM5I9350 is a low-voltage high-performance 200MHz PLL-based clock driver designed for high speed clock distribution applications.

The ASM5I9350 features Xtal and LVCMOS reference clock inputs and provides nine outputs partitioned in four banks of 1, 1, 2, and 5 outputs. Bank A divides the VCO output by 2 or 4 while the other banks divide by 4 or 8 per SEL(A:D) settings, see Table 2. These dividers allow output to input ratios of 16:1, 8:1, 4:1, and 2:1. Each LVCMOS compatible output can drive 50Ω series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:18.

The PLL is ensured stable given that the VCO is configured to run between 200MHz to 500MHz. This allows a wide range of output frequencies from 25MHz to 200MHz. The internal VCO is running at multiples of the input reference clock set by the feedback divider, see Table 1.

When PLL_EN is LOW, PLL is bypassed and the reference clock directly feeds the output dividers. This mode is fully static and the minimum input clock frequency specification does not apply.


Alliance Semiconductor

2575, Augustine Drive • Santa Clara, CA • Tel: 408.855.4900 • Fax: 408.855.4999 • www.alsc.com

rev 0.2

Block Diagram

rev 0.2 Pin Discription¹


Pin #	Pin Name	I/O	Туре	Description
8	XOUT	0	Analog	Oscillator Output. Connect to a crystal.
9	XIN	I	Analog	Oscillator Input. Connect to a crystal.
30	TCLK	I, PD	LVCMOS	LVCMOS/LVTTL reference clock input
28	QA	0	LVCMOS	Clock output bank A
26	QB	0	LVCMOS	Clock output bank B
22, 24	QC(1:0)	0	LVCMOS	Clock output bank C
12, 14, 16, 18, 20	QD(4:0)	0	LVCMOS	Clock output bank D
2	FB_SEL	I, PD	LVCMOS	Internal Feedback Select Input. See Table 1.
10	OE#	I, PD	LVCMOS	Output enable/disable input. See Table 2.
31	PLL_EN	I, PU	LVCMOS	PLL enable/disable input. See Table 2.
32	REF_SEL	I, PD	LVCMOS	Reference select input. See Table 2.
3, 4, 5, 6	SEL(A:D)	I, PD	LVCMOS	Frequency select input, Bank (A:D). See Table 2.
27	VDDQB	Supply	VDD	2.5V or 3.3V Power supply for bank B output clock ^{2,3}
23	VDDQC	Supply	VDD	2.5V or 3.3V Power supply for bank C output clocks ^{2,3}
15, 19	VDDQD	Supply	VDD	2.5V or 3.3V Power supply for bank D output clocks ^{2,3}
1	AVDD	Supply	VDD	2.5V or 3.3V Power supply for PLL ^{2,3}
11	VDD	Supply	VDD	2.5V or 3.3V Power supply for core, inputs, and bank A output clock ^{2,3}
7	AVSS	Supply	Ground	Analog ground
13, 17, 21, 25, 29	VSS	Supply	Ground	Common ground

Note: 1. PU = Internal pull-up, PD = Internal pull-down.

FO - Internal pull-up, PD = Internal pull-down.
A 0.1µF bypass capacitor should be placed as close as possible to each positive power pin (<0.2"). If these bypass capacitors are not close to the pins their high frequency filtering characteristics will be cancelled by the lead inductance of the traces.
AVDD and VDD pins must be connected to a power supply level that is at least equal or higher than that of VDDQB, VDDQC, and VDDQD output power supply pins.

Table 1: Frequency Table

FB_SEL	Feedback Divider	VCO	Input Frequency Range (AVDD = 3.3V)	Input Frequency Range (AVDD = 2.5V)
0	÷32	Input Clock * 32	6.25 MHz to 15.625 MHz	6.25 MHz to 11.875 MHz
1	÷16	Input Clock * 16	12.5 MHz to 31.25 MHz	12.5 MHz to 23.75 MHz

rev 0.2 Table 2: Function Table

Control	Default	0	1
REF_SEL	0	Xtal	TCLK
PLL_EN	1	Bypass mode, PLL disabled. The input clock connects to the output dividers	PLL enabled. The VCO output connects to the output dividers
OE#	0	Outputs enabled	Outputs disabled (three-state)
FB_SEL	0	Feedback divider ÷32	Feedback divider ÷16
SELA	0	÷2 (Bank A)	÷ 4 (Bank A)
SELB	0	÷4 (Bank B)	÷ 8 (Bank B)
SELC	0	÷4 (Bank C)	÷ 8 (Bank C)
SELD	0	÷4 (Bank D)	÷ 8 (Bank D)

Absolute Maximum Ratings

Parameter	Description	Condition	Min	Max	Unit
Vdd	DC Supply Voltage		-0.3	5.5	V
Vdd	DC Operating Voltage	Functional	2.375	3.465	V
VIN	DC Input Voltage	Relative to Vss	-0.3	VDD+ 0.3	V
Vout	DC Output Voltage	Relative to Vss	-0.3	VDD+ 0.3	V
Vtt	Output termination Voltage			Vdd ÷2	V
LU	Latch Up Immunity	Functional	200		mA
Rps	Power Supply Ripple	Ripple Frequency < 100 kHz		150	mVp-p
Ts	Temperature, Storage	Non-functional	-65	+150	°C
Та	Temperature, Operating Ambient	Functional	-40	+85	°C
TJ	Temperature, Junction	Functional		+150	°C
ØJC	Dissipation, Junction to Case	Functional		42	°C/W
Øja	Dissipation, Junction to Ambient	Functional		105	°C/W
ESDH	ESD Protection (Human Body Model)		2000		Volts
FIT	Failure in Time	Manufacturing test		10	ppm

rev 0.2

DC Electrical Specifications (V_{CC} = 2.5V \pm 5%, T_A = -40°C to +85°C)

Parameter	Description	Condition	Min	Тур	Max	Unit
VIL	Input Voltage, Low	LVCMOS	-	-	0.7	V
VIH	Input Voltage, High	LVCMOS	1.7	-	VDD+0.3	V
Vol	Output Voltage, Low ¹	lo∟= 15mA	-	-	0.6	V
Voн	Output Voltage, High ¹	Іон= –15mA	1.8	-	4	V
lil	Input Current, Low ²	VIL= VSS	-	-	-100	μA
Ін	Input Current, High ²	VIL= VDD	-	-	100	μA
Idda	PLL Supply Current	AVDD only	-	5	10	mA
Iddq	Quiescent Supply Current	All VDD pins except AVDD	-		7	mA
	Dunamia Supply Current	Outputs loaded @ 100 MHz	-	180	- >	m۸
IDD	Dynamic Supply Current	Outputs loaded @ 200 MHz		210	-	mA
CIN	Input Pin Capacitance		-	4	<u> </u>	pF
Zout	Output Impedance		14	18	22	Ω

Note: 1. Driving one 50Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, each output drives up to two 50Ω series terminated transmission lines.

2. Inputs have pull-up or pull-down resistors that affect the input current.

DC Electrical Specifications (V_{CC} = 3.3V ± 5%, T_A = -40°C to +85°C)

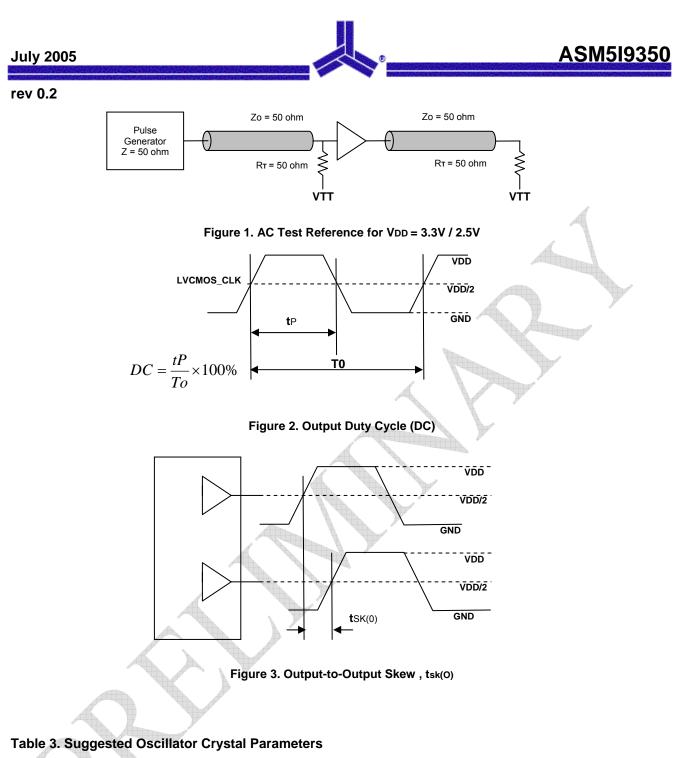
Parameter	Description	Condition	Min	Тур	Max	Unit
VIL	Input Voltage, Low	LVCMOS	-	-	0.8	V
Vih	Input Voltage, High	LVCMOS	2.0	-	VDD+0.3	V
Vol	Output Voltage, Low ¹	IoL= 24 mA	-	-	0.55	V
VOL	Output Voltage, Low	IOL= 12 mA	-	-	0.30	v
Vон	Output Voltage, High ¹	Іон= –24 mA	2.4	-	-	V
lı∟	Input Current, Low ²	VIL= VSS	-	-	-100	μA
Ін	Input Current, High ²	VIL= VDD	-	-	100	μA
Idda	PLL Supply Current	AVDD only	-	5	10	mA
Iddq	Quiescent Supply Current	All VDD pins except AVDD	-	-	7	mA
IDD	Dunomic Supply Current	Outputs loaded @ 100 MHz	-	270	-	mA
טטו	Dynamic Supply Current Outputs loaded (-	300	-	ШA
CIN	Input Pin Capacitance		-	4	-	pF
Ζουτ	Output Impedance		12	15	18	Ω

Note: 1. Driving one 50Ω parallel terminated transmission line to a termination voltage of VTT. Alternatively, each output drives up to two 50Ω series terminated transmission lines.

2. Inputs have pull-up or pull-down resistors that affect the input current.

rev 0.2

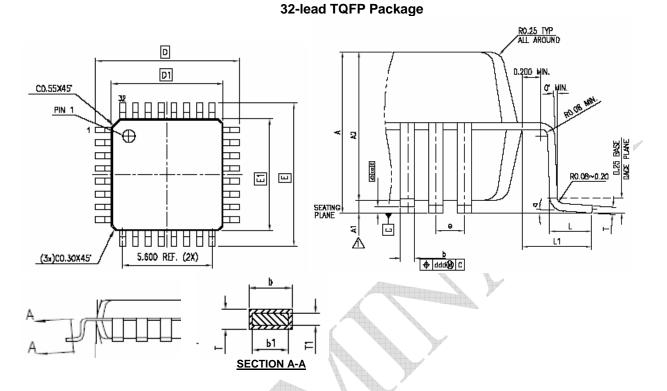
AC Electrical Specifications $(V_{CC} = 2.5V \pm 5\%, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)^{1}$


Parameter	Description	Condition	Min	Тур	Max	Unit	
fvco	VCO Frequency		200	-	380	MHz	
		÷16 Feedback	12.5	-	23.75		
fin	Input Frequency	÷32 Feedback	6.25	-	11.87	MHz	
		Bypass mode (PLL_EN = 0)	0	-	200		
f XTAL	Crystal Oscillator Frequency		10	-	23.75	MHz	
frefDC	Input Duty Cycle		25		75	%	
tr, tf	TCLK Input Rise/FallTime	0.7V to 1.7V	-	-	1.0	nS	
		÷2 Output	100	-	190 🗡		
fmax	Maximum Output Frequency	÷4 Output	50		95	MHz	
		÷8 Output	25		47.5]	
DC	Output Duty Cycle	fmax< 100 MHz	47.5		52.5	%	
DC		fmax > 100 MHz	45		55		
tr, tf	Output Rise/Fall times	0.6V to 1.8V	0.1		1.0	nS	
tsk(O)	Output-to-Output Skew			-	150	pS	
tplz, Hz	Output Disable Time			-	10	nS	
tpzl, zh	Output Enable Time			-	10	nS	
BW	PLL Closed Loop Bandwidth (-3dB)	÷16 Feedback	-	0.7 - 0.9	-	MHz	
DVV	PLE Closed Loop Bandwidth (-30B)	÷32 Feedback	-	0.6 - 0.8	-	IVITZ	
t 117(00)		Same frequency	-	-	150		
tjit(cc)	Cycle-to-Cycle Jitter	Multiple frequencies	-	-	250	pS	
	Period Jitter	Same frequency	-	-	100	~~~	
tJIT(PER)	renou siller	Multiple frequencies	-	-	175	pS	
t LOCK	Maximum PLL Lock Time		-	-	1	mS	

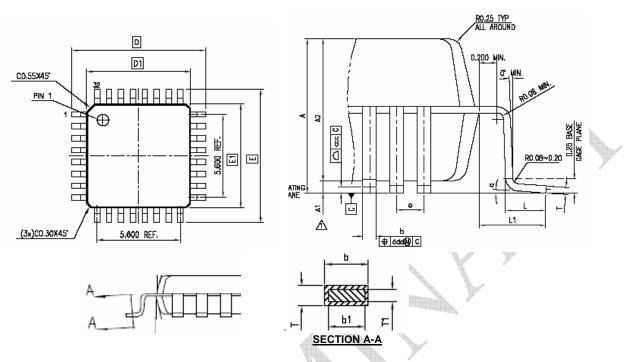
Note: 1. AC characteristics apply for parallel output termination of 50Ω to VTT. Parameters are guaranteed by characterization and are not 100% tested.

AC Electrical Specifications (VCC = $3.3V \pm 5\%$, TA = -40° C to $+85^{\circ}$ C)¹

Parameter	Description	Condition	Min	Тур	Max	Unit	
f _{VCO}	VCO Frequency		200	-	500	MHz	
		÷16 Feedback	12.5	-	31.25		
f _{in}	Input Frequency	÷32 Feedback	6.25	-	15.625	MHz	
		Bypass mode (PLL_EN = 0)	0		200		
f _{XTAL}	Crystal Oscillator Frequency		10		25	MHz	
f_{refDC}	Input Duty Cycle		25	-	75	%	
t _r , t _f	TCLK Input Rise/FallTime	0.8V to 2.0V	-	-	1.0	nS	
		÷2 Output	100	-	200		
f _{MAX}	Maximum Output Frequency	÷4 Output	50		125	MHz	
		÷8 Output	25	· ·	62.5		
DC	Output Duty Cycle	f _{MAX} < 100 MHz	47.5		52.5	%	
DC		f _{MAX} > 100 MHz	45	-	55	70	
t _r , t _f	Output Rise/Fall times	0.8V to 2.4V	0.1	¥ -	1.0	nS	
t _{sk(O)}	Output-to-Output Skew	Banks at same voltage	-	-	150	pS	
t _{sk(B)}	Bank-to-Bank Skew	Banks at different voltages	Z	-	350	pS	
t _{PLZ, HZ}	Output Disable Time		-	-	10	nS	
t _{PZL, ZH}	Output Enable Time		-	-	10	nS	
BW	DLL Classed Learn Dandwidth (2dD)	÷16 Feedback	-	0.7 – 0.9	-	N41 I-	
DVV	PLL Closed Loop Bandwidth (-3dB)	÷32 Feedback	Feedback - 0.6		-	MHz	
4 \		Same frequency	-	-	150		
t _{JIT(CC})	Cycle-to-Cycle Jitter	Multiple frequencies	-	-	250	pS	
4	Period Jitter	Same frequency	-	-	100		
$t_{\text{JIT}(\text{PER})}$	Feriou Jiller	Multiple frequencies	-	-	150	pS	
t _{LOCK}	Maximum PLL Lock Time		-	-	1	mS	


Note: 1. AC characteristics apply for parallel output termination of 50Ω to VTT. Parameters are guaranteed by characterization and are not 100% tested.

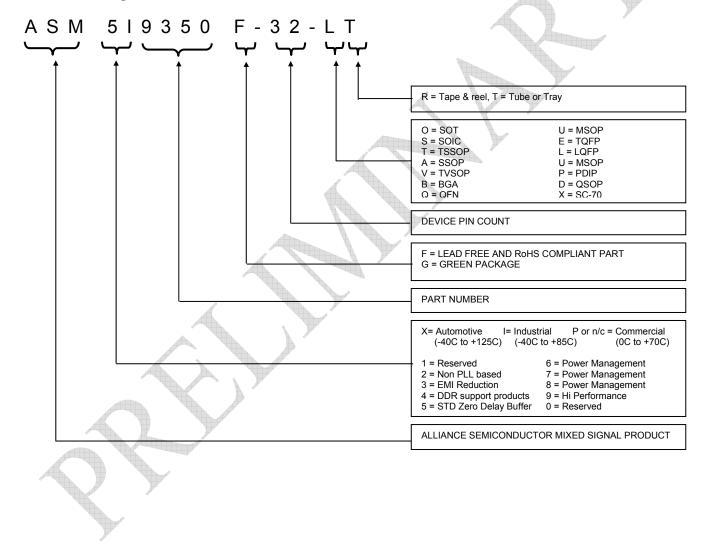
Characteristic	Symbol	Conditions	Min	Тур	Max	Units
Frequency Tolerance	Тс		-	-	±100	ppm
Frequency Temperature Stability	Ts	(TA-10 +60C)	-	-	±00	ppm
Aging	ТА	First three years @ 25°C	-	-	5	ppm/yr
Load Capacitance	CL	Crystal's rated load	-	20	-	pF
Effective Series Resistance	Resr		-	40	80	Ω



Package Diagram

		Dimensions						
Symbol	Inch	es	Millim	eters				
	Min	Max	Min	Max				
Α		0.0472		1.2				
A1	0.0020	0.0059	0.05	0.15				
A2	0.0374	0.0413	0.95	1.05				
D	0.3465	0.3622	8.8	9.2				
D1	0.2717	0.2795	6.9	7.1				
E	0.3465	0.3622	8.8	9.2				
E1	0.2717	0.2795	6.9	7.1				
L	0.0177	0.0295	0.45	0.75				
L1	0.03937	7 REF	1.00	REF				
Т	0.0035	0.0079	0.09	0.2				
T1	0.0038	0.0062	0.097	0.157				
b	0.0118	0.0177	0.30	0.45				
b1	0.0118	0.0157	0.30	0.40				
R0	0.0031	0.0079	0.08	0.2				
а	0°	7°	0°	7°				
е	0.031 E	BASE	0.8 B	ASE				

32-lead LQFP Package



	Dimensions					
Symbol	Inch	Inches Millimeters		eters		
	Min	Max	Min	Max		
Α	A <i>b</i>	0.0630		1.6		
A1	0.0020	0.0059	0.05	0.15		
A2	0.0531	0.0571	1.35	1.45		
D	0.3465	0.3622	8.8	9.2		
D1	0.2717	0.2795	6.9	7.1		
E	0.3465	0.3622	8.8	9.2		
E1	0.2717	0.2795	6.9	7.1		
Ľ	0.0177	0.0295	0.45	0.75		
L1	0.03937	7 REF	1.00	REF		
Т	0.0035	0.0079	0.09	0.2		
T1	0.0038	0.0062	0.097	0.157		
b	0.0118	0.0177	0.30	0.45		
b1	0.0118	0.0157	0.30	0.40		
R0	0.0031	0.0079	0.08	0.20		
е	0.031 E	BASE	0.8 BASE			
а	0°	7°	0°	7°		

Ordering Information

Part Number	Marking	Package Type	Temperature
ASM5I9350-32-ET	ASM5I9350	32-pin TQFP	Industrial
ASM5I9350-32-LT	ASM519350	32-pin LQFP – Tape and Reel	Industrial
ASM5I9350G-32-ET	ASM5I9350G	32-pin TQFP, Green	Industrial
ASM5I9350G-32-LT	ASM5I9350G	32-pin LQFP – Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM5I9350 Document Version: 0.2

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.